
©2024 Fastly, Inc.

Go Channel
Slowdown with more
CPU
16 August 2024

Grant Stephens
Staff Engineer

©2024 Fastly, Inc. 2

Grant Stephens
Logging @ Fastly
Ex mechanic
Recently bought a chainsaw

©2024 Fastly, Inc. 3

©2024 Fastly, Inc. 4

Edge Cache Nodes

5k+
Countries

35
Edge network capacity

At 31 March 2024

336Tbps

©2024 Fastly, Inc. 5

Context

©2024 Fastly, Inc. 6

ctx.Background()

©2024 Fastly, Inc.

Customer infrastructure

No Edge

©2024 Fastly, Inc.

Fastly infrastructure

Customer infrastructure

Basics

©2024 Fastly, Inc.

Fastly infrastructure

Customer infrastructure

Shielding

©2024 Fastly, Inc.

Fastly infrastructure

Customer infrastructure

Logging

©2024 Fastly, Inc.

Aggregators

©2024 Fastly, Inc. 12

Some of our customers

12

©2024 Fastly, Inc.

36.9M
13

Clearly
valuable

Average logs/s delivered
As of 1st August 2024

©2024 Fastly, Inc. 14

One day, it got slow…

©2024 Fastly, Inc. 15

One day it stopped getting
faster…

©2024 Fastly, Inc.

Check the logs
(Yes, the logging system logs)

16

©2024 Fastly, Inc.

Head Scratching

©2024 Fastly, Inc.©2023 Fastly, Inc. Confidential 1818

Status:

https://pkg.go.dev/runtime/metrics

©2024 Fastly, Inc. 19

Profile it

©2024 Fastly, Inc. 20

Grab a profile

ssh -oProxyJump=bastion myBadlyBehavingHost \

'curl http://127.0.0.1:1310/debug/pprof/profile' > badProfile.prof

©2024 Fastly, Inc.

Hint…

©2024 Fastly, Inc. 22

Channels have locks!?!

©2024 Fastly, Inc. 23

Channels have locks!!!

©2024 Fastly, Inc.

Single channel bottleneck

©2024 Fastly, Inc. 25

Channels are fast right?

©2024 Fastly, Inc.

Philʼs wisdom

https://syslog.ravelin.com/so-just-how-fast-are-channels-anyway-4c156a407e45

©2024 Fastly, Inc. 27

Basic Benchmark

Send a byte, do nothing with it

func BenchmarkChannelOneByte(b *testing.B) {
 ch := make(chan byte, 4096)
 wg := sync.WaitGroup{}
 wg.Add(1)
 go func() {
 defer wg.Done()
 for range ch {
 }
 }()
 b.SetBytes(1)
 b.ReportAllocs()
 b.ResetTimer()
 for i := 0; i < b.N; i++ {
 ch <- byte(i)
 }
 close(ch)
 wg.Wait()
}

©2024 Fastly, Inc.

10M
28

Fast…

Channel throughput per second

©2024 Fastly, Inc.

Head Scratching

©2024 Fastly, Inc. 30

Benchmark ≠ Production

©2024 Fastly, Inc. 31

Now… about those aggregators

©2024 Fastly, Inc. 32

Cores

128
Memory

1TB

©2024 Fastly, Inc.©2023 Fastly, Inc. Confidential

128≠8
3333

Status:

©2024 Fastly, Inc. 34

Letʼs benchmark on production
hardware

©2024 Fastly, Inc. 35

Basic Benchmark

go func() {
 for {
 select {
 case <-b.ch:
 case <-b.close:
 return
 }
 }
}()

go func() {
 for range b.ch {
 }
}()

©2024 Fastly, Inc. 36

Side quest: Benchmarking Tips
and Tricks

©2024 Fastly, Inc.©2023 Fastly, Inc. Confidential 3737

Status:

https://dave.cheney.net/2013/06/30/how-to-write-benchmarks-in-go

©2024 Fastly, Inc. 38

Building Benchmarks

go test -bench="BenchmarkChannel" -c .

©2024 Fastly, Inc. 39

Running Built Benchmarks

./chanbench.test -test.bench BenchmarkChannel -test.cpu=1,2.. -test.count=10

©2024 Fastly, Inc.©2023 Fastly, Inc. Confidential 40

Benchstat FTW!

40

Status:

https://pkg.go.dev/golang.org/x/perf/cmd/benchstat

©2024 Fastly, Inc. 41

Side quest complete.
Where were we…

©2024 Fastly, Inc. 42

Basic Benchmark

go func() {
 for {
 select {
 case <-b.ch:
 case <-b.close:
 return
 }
 }
}()

go func() {
 for range b.ch {
 }
}()

©2024 Fastly, Inc. 43

Basic Benchmark

Send some bytes on a channel

Read them off as quickly as possible

©2024 Fastly, Inc. 44

Thank you

©2024 Fastly, Inc. 45

Try again

©2024 Fastly, Inc. 46

Basic Benchmark

b.Run(tst.name, func(b *testing.B) {
 f := tst.new()
 f.Start()
 defer f.Stop()
 b.ResetTimer()
 for i := 0; i < b.N; i++ {
 f.Put(msgs[i%len(msgs)])
 }
 b.ReportAllocs()
})

©2024 Fastly, Inc. 47

Basic Benchmark.. In Parallel

b.Run(tst.name, func(b *testing.B) {
 f := tst.new()
 f.Start()
 b.ResetTimer()
 defer f.Stop()
 i := 0
 b.RunParallel(func(pb *testing.PB) {
 for pb.Next() {
 f.Put(msgs[i%len(msgs)])
 i++
 }
 })
 b.ReportAllocs()
})

©2024 Fastly, Inc. 48

This slide left intentionally blank
to build suspense…

©2024 Fastly, Inc. 49

CPU Benchmark

©2024 Fastly, Inc.©2023 Fastly, Inc. Confidential

÷3
50

Slowdown in channel speed from 1 to 128 CPUs

50

Status:

©2024 Fastly, Inc. 51

Range and Select

©2024 Fastly, Inc. 52

CPU Benchmark

Same effect for loops & select

©2024 Fastly, Inc. 53

Select is slower?

©2024 Fastly, Inc. 54

Select has more contention

©2024 Fastly, Inc. 55

Matched Receivers

©2024 Fastly, Inc. 56

Effect of Matching Senders &
Receivers

Having a single worker can be faster

©2024 Fastly, Inc. 57

Having a single worker halves
the contention issue

©2024 Fastly, Inc. 58

Buffers

©2024 Fastly, Inc. 59

Effect of Buffer size

Buffers help a bit at lower CPU counts

©2024 Fastly, Inc. 60

Buffers buy some headroom, but
itʼs basically all downhill

©2024 Fastly, Inc.

TL;DR
With a CPU count of more than 60, channel
throughput is limited to around 1 million per
second

61

©2024 Fastly, Inc. 62

Solutions

©2024 Fastly, Inc. 63

Solutions?

©2024 Fastly, Inc.©2023 Fastly, Inc. Confidential 64

Happy medium seems to be around 32
Very workload dependent

64

Status:

https://pkg.go.dev/runtime#GOMAXPROCS

©2024 Fastly, Inc.©2023 Fastly, Inc. Confidential 65

Unfortunately donʼt have control over which thread

65

Status:

https://pkg.go.dev/runtime#LockOSThread

©2024 Fastly, Inc. 66

Timeout

select {
 case ch <- ent:
 case <-timeout.C:
 // do something with this
}

At some point it could be holding everything up, so have a
way to exit early.

©2024 Fastly, Inc. 67

Scale the channels

chIdx := time.Now().Nanosecond() % maxBufCount

select {

case chs[bufIdx].Load().(chan msgType) <- ent:

 ...

Hard coded, or auto scale them.

Adds a lot of complexity

©2024 Fastly, Inc. 68

Buffers

b.Lock()

buffer = append(buffer, ent)

if len(buffer) == maxBufSize {

 ch <- buffer

 buffer = buffer[:0]

}

b.Unlock()

Reduces writes to the channel by the size of the
buffer, but does introduce locking.

©2024 Fastly, Inc. 69

Containers!?

©2024 Fastly, Inc.

Aggregators

©2024 Fastly, Inc.

©2024 Fastly, Inc. 72

Conclusions

©2024 Fastly, Inc.

TL;DR
With a CPU count of more than 60, channel
throughput is limited to around 1 million per
second

73

©2024 Fastly, Inc.

TL;DR
Solutions include:

GOMAXPROCS
Buffered Channels
Scaling Channels
Timeouts

74

©2024 Fastly, Inc. 75

Links

Used in this presentation:

➔ Runtime Metrics
➔ So just how fast are channels anyway?
➔ How to write benchmarks in Go
➔ Benchstat
➔ GOMAXPROCS
➔ LockOSThread

Me:

➔ @rexfuzzle@hub13.xyz
➔ https://www.linkedin.com/in/grantstephensza
➔ grant@stephens.co.za

This presentation:

➔ https://exactly-right-airedale.edgecompute.app/

https://pkg.go.dev/runtime/metrics
https://syslog.ravelin.com/so-just-how-fast-are-channels-anyway-4c156a407e45
https://dave.cheney.net/2013/06/30/how-to-write-benchmarks-in-go
https://pkg.go.dev/golang.org/x/perf/cmd/benchstat
https://pkg.go.dev/runtime#GOMAXPROCS
https://pkg.go.dev/runtime#LockOSThread
https://hub13.xyz/@rexfuzzle
https://www.linkedin.com/in/grantstephensza
mailto:grant@stephens.co.za
https://exactly-right-airedale.edgecompute.app/

©2024 Fastly, Inc. 76

Thank you

