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Grant Stephens
Logging @ Fastly
Ex mechanic
Recently bought a chainsaw
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Edge Cache Nodes

5k+
Countries

35
Edge network capacity

At 31 March 2024

336Tbps
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Context
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ctx.Background()
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Customer infrastructure

No Edge
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Fastly infrastructure

Customer infrastructure

Basics
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Fastly infrastructure

Customer infrastructure

Shielding
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Fastly infrastructure

Customer infrastructure

Logging
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Aggregators
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Some of our customers

12
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36.9M
13

Clearly 
valuable

Average logs/s delivered
As of 1st August 2024
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One day, it got slow…
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One day it stopped getting 
faster…
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Check the logs
(Yes, the logging system logs)

16
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Head Scratching
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Status: 

https://pkg.go.dev/runtime/metrics
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Profile it
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Grab a profile

ssh -oProxyJump=bastion myBadlyBehavingHost \

'curl http://127.0.0.1:1310/debug/pprof/profile' > badProfile.prof
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Hint…
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Channels have locks!?!
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Channels have locks!!!
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Single channel bottleneck
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Channels are fast right?
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Philʼs wisdom

https://syslog.ravelin.com/so-just-how-fast-are-channels-anyway-4c156a407e45
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Basic Benchmark

Send a byte, do nothing with it

func BenchmarkChannelOneByte(b *testing.B) {
    ch := make(chan byte, 4096)
    wg := sync.WaitGroup{}
    wg.Add(1)
    go func() {
        defer wg.Done()
        for range ch {
        }
    }()
    b.SetBytes(1)
    b.ReportAllocs()
    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        ch <- byte(i)
    }
    close(ch)
    wg.Wait()
}
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10M
28

Fast…

Channel throughput per second
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Head Scratching
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Benchmark ≠ Production
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Now… about those aggregators
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Cores

128
Memory

1TB
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128≠8
3333

Status: 
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Letʼs benchmark on production 
hardware
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Basic Benchmark

go func() {
    for {
        select {
        case <-b.ch:
        case <-b.close:
            return
        }
    }
}()

go func() {
    for range b.ch {
    }
}()
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Side quest: Benchmarking Tips 
and Tricks



©2024 Fastly, Inc.©2023 Fastly, Inc. Confidential 3737

Status: 

https://dave.cheney.net/2013/06/30/how-to-write-benchmarks-in-go
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Building Benchmarks

go test -bench="BenchmarkChannel" -c .
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Running Built Benchmarks

./chanbench.test -test.bench BenchmarkChannel -test.cpu=1,2.. -test.count=10
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Benchstat FTW!

40

Status: 

https://pkg.go.dev/golang.org/x/perf/cmd/benchstat
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Side quest complete. 
Where were we…
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Basic Benchmark

go func() {
    for {
        select {
        case <-b.ch:
        case <-b.close:
            return
        }
    }
}()

go func() {
    for range b.ch {
    }
}()



©2024 Fastly, Inc. 43

Basic Benchmark

Send some bytes on a channel

Read them off as quickly as possible
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Thank you
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Try again
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Basic Benchmark

b.Run(tst.name, func(b *testing.B) {
    f := tst.new()
    f.Start()
    defer f.Stop()
    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        f.Put(msgs[i%len(msgs)])
    }
    b.ReportAllocs()
})
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Basic Benchmark.. In Parallel

b.Run(tst.name, func(b *testing.B) {
    f := tst.new()
    f.Start()
    b.ResetTimer()
    defer f.Stop()
    i := 0
    b.RunParallel(func(pb *testing.PB) {
        for pb.Next() {
            f.Put(msgs[i%len(msgs)])
            i++
        }
    })
    b.ReportAllocs()
})
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This slide left intentionally blank 
to build suspense…
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CPU Benchmark
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÷3
50

Slowdown in channel speed from 1 to 128 CPUs

50

Status: 
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Range and Select
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CPU Benchmark

Same effect for loops & select
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Select is slower?
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Select has more contention



©2024 Fastly, Inc. 55

Matched Receivers
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Effect of Matching Senders & 
Receivers

Having a single worker can be faster
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Having a single worker halves 
the contention issue
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Buffers
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Effect of Buffer size

Buffers help a bit at lower CPU counts
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Buffers buy some headroom, but 
itʼs basically all downhill
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TL;DR
With a CPU count of more than 60, channel 
throughput is limited to around 1 million per 
second

61
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Solutions
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Solutions?
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Happy medium seems to be around 32
Very workload dependent

64

Status: 

https://pkg.go.dev/runtime#GOMAXPROCS
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Unfortunately donʼt have control over which thread

65

Status: 

https://pkg.go.dev/runtime#LockOSThread
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Timeout

select {
    case ch <- ent:
    case <-timeout.C:
        // do something with this
}

At some point it could be holding everything up, so have a 
way to exit early.
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Scale the channels

chIdx := time.Now().Nanosecond() % maxBufCount

select {

case chs[bufIdx].Load().(chan msgType) <- ent:

    ...

Hard coded, or auto scale them.

Adds a lot of complexity
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Buffers

b.Lock()

buffer = append(buffer, ent)

if len(buffer) == maxBufSize {

    ch <- buffer

    buffer = buffer[:0]

}

b.Unlock()

Reduces writes to the channel by the size of the 
buffer, but does introduce locking.
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Containers!?
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Aggregators
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Conclusions
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TL;DR
With a CPU count of more than 60, channel 
throughput is limited to around 1 million per 
second 

73
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TL;DR
Solutions include:

GOMAXPROCS
Buffered Channels
Scaling Channels
Timeouts

74
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Links

Used in this presentation:

➔ Runtime Metrics
➔ So just how fast are channels anyway?
➔ How to write benchmarks in Go
➔ Benchstat
➔ GOMAXPROCS
➔ LockOSThread

Me:

➔ @rexfuzzle@hub13.xyz
➔ https://www.linkedin.com/in/grantstephensza
➔ grant@stephens.co.za

This presentation:

➔ https://exactly-right-airedale.edgecompute.app/

https://pkg.go.dev/runtime/metrics
https://syslog.ravelin.com/so-just-how-fast-are-channels-anyway-4c156a407e45
https://dave.cheney.net/2013/06/30/how-to-write-benchmarks-in-go
https://pkg.go.dev/golang.org/x/perf/cmd/benchstat
https://pkg.go.dev/runtime#GOMAXPROCS
https://pkg.go.dev/runtime#LockOSThread
https://hub13.xyz/@rexfuzzle
https://www.linkedin.com/in/grantstephensza
mailto:grant@stephens.co.za
https://exactly-right-airedale.edgecompute.app/
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Thank you


